Originally posted May 2, 2009

Some things are just better done in groups.  For example, it’s better to wait until you have a large group of allies before going to war.  People know this, and apparently bacteria do as well.

If a lone bacterium where to “decide” that it was time to launch an attack on its host, then the host’s immune system would probably be able to hone in on this individual and remove it rather quickly.  The bacterium’s chance of success increases dramatically when it’s acting in conjunction with lots of other bacteria at the same time.  Bacteria figure out how many of their allies are present through a system known as quorum sensing.

When a bacterium’s receptors detect a sufficient number of allies close by, a series of important genes related to accomplishing specific tasks are switched on or off.  By this mechanism, everyone goes into attack mode together.

Bacteria use quorum sensing in other ways too.  My favorite example involves a bioluminescent bacteria called Vibrio fischeri.  Bioluminescent bacteria produce a glowing light, similar to the lights emitted by fireflies.  Vibrio fischeri have an unusualsymbiotic relationship bobtail squids.

bobtail_squidDuring the day, these bacteria reside in a portion of the squid’s mantle, where they’re provided with ample resources for growth and reproduction.  By night, when the squid is ready to hunt, the bacteria have sufficiently multiplied to the point where they reach quorum.  At this point, they begin bioluminescing as a group.

So why would the squid want to be carrying around a bunch of brightly lit bacteria? Well, on moonlit nights the squid casts a distinctive shadow on the sea floor as it hunts, attracting the attention of predators.

The light produced by the bacteria cancels out the squid’s shadow.  The squid’s bacteria pouch contains a filter, which the squid uses to dim the light to the point that the amount of light emitted from the pouch matches the amount of light shining on the side of the squid facing the sky.  In return for a good meal and a safe place to call home, the bacteria help the squid hide from its predators.

At the end of the night, the squid squeezes most of the bacteria out of the pouch, leaving enough so that quorum will be reached again the following night.

Current quorum sensing studies are attempting to better understand mechanisms bacteria use to coordinate attacks on the human body.  By figuring out how bacteria communicate with one another, it may be possible to disrupt their communication efforts and less the efficiency with which they attack.

If you’re interested in learning more, the Bassler Lab does a lot of awesome work on quorum sensing.

One Response to “Bacteria communicate more efficiently than most people I know…”

  1. Jessica

    Cor blimey, if any of my Bio professors had been even half as articulate, I might not have switched majors in the end. Ah well, no law against reading.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.


September 1st, 2018

Graduate student position available studying alternative reproductive tactics at BGSU

We seek a graduate student for a newly NSF-funded project examining the life history decisions made by male smallmouth bass. […]

June 14th, 2018

Part of that World

The other day I was singing “Part of your World” from The Little Mermaid, but was changing some of the […]

June 13th, 2018

Parasite manipulation of host behavior in pop culture

I’m going to be giving a talk at the sure-to-be-amazing Zombie Apocalypse Medicine Meeting. The meeting celebrates all things zombie-related, and […]

June 4th, 2017

Soonish giveaway on Goodreads!

Five copies of the advance reader version of Zach and my new book Soonish are up for grabs on Goodreads! Click […]

March 7th, 2017

Soonish: Ten Emerging Technologies That’ll Improve and/or Ruin Everything

Zach and I wrote a book! Soonish: Ten Emerging Technologies That’ll Improve and/or Ruin Everything explores 10 emerging technologies, and discusses the roadblocks […]

January 26th, 2017

Tales from the Crypt: a parasitoid manipulates the behaviour of its parasite host

I have a new paper out with Dr. Scott Egan, Dr. Andrew Forbes, and Sean Liu! The paper is Open Access […]

May 30th, 2016

Postdoc with Dr. Ryan Hechinger (and me!)

We’re looking for a postdoc! See below! —————— Postdoctoral Opportunity with the Marine Biology Research Division at SIO Postdoctoral Scholar […]

May 7th, 2016

Science…sort of Episode 240: Moon Rocks Don’t Glow

I co-hosted an episode of Science…sort of recently. I pasted the show notes below, but you’ll have to head over […]

February 24th, 2016

Books on parasites

I’m often asked by students to suggest books they can read about parasites. Below is a list of books that […]

August 22nd, 2015

Great Adaptations – A kid’s book about evolution

Zach Weinersmith and I contributed to Tiffany Taylor’s children’s book about evolution. Tiffany worked with scientists to create Seuss-style stories […]